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A B S T R A C T

Harmful algal blooms (HABs) are a growing concern in the West Florida Shelf (WFS) region. An Ecopath with
Ecosim (EwE) model of the WFS explicitly simulating HABs was previously developed to illuminate the potential
impacts of blooms of the dinoflagellate Karenia brevis (colloquially referred to as “red tides”) on the WFS eco-
system. However, the diet matrix of the Ecopath component of this EwE model (referred to as “WFS-HAB
Ecopath”) was based largely on sparse, cursory information and not on local survey data. Here, we revise the diet
matrix of the WFS-HAB Ecopath model using predictions of a robust statistical model that incorporates local
survey data and employs the Dirichlet distribution and maximum likelihood estimation. The relative impacts of
both the revised diet matrix and red tide mortality scenarios on model structure are explored by comparing four
alternative WFS-HAB Ecopath models: (i) the base model; (ii) a model employing the revised diet matrix; (iii) a
model with elevated red tide mortality; and (iv) a model with both the revised diet matrix and elevated red tide
mortality. Incorporating the revised diet matrix into the WFS-HAB Ecopath model had a relatively large impact
on ecosystem structure (i.e., trophic organization, mortality rates, trophic interaction strengths, and omnivory).
Elevated red tide mortality had virtually no impact on ecosystem structure aside from altering the contribution
of fishing, natural, and red tide mortalities to the total mortality of functional groups; however, elevated red tide
mortality might have meaningful implications in dynamic simulations, which should be explored in future
studies. Collectively, results showed that incorporating the revised diet matrix into WFS-HAB Ecopath, which
revealed a number of new predator-prey linkages, led to a more complex and interconnected food web.
Specifically, prey items were generally consumed by a broader variety of predators, which contrasts with the
base WFS-HAB Ecopath model where many prey, particularly juvenile fishes, were subjected to exceedingly high
predation mortality rates from specific predators. The incorporation of the revised diet matrix into the WFS-HAB
Ecopath model discussed herein is a fundamental step towards increasing the realism of trophic interactions in
the model, which is particularly important as these trophic interactions define starting conditions for dynamic
simulations.

1. Introduction

The ecosystem services provided by the Gulf of Mexico are invalu-
able for the U.S. economy, particularly those from the West Florida

Shelf (WFS) (Fig. 1; Plantier-Santos et al., 2012; Chagaris, 2013;
Karnauskas et al., 2013). However, the productivity of the WFS eco-
system may be greatly impacted by harmful algal blooms (HABs)
(Walsh et al., 2011). The WFS regularly experiences blooms of the
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dinoflagellate Karenia brevis, colloquially referred to as “red tides”.
When blooms of K. brevis become massive, the lysis of K. brevis cells
results in the release of a neurotoxin called brevetoxin (Steidinger et al.,
1998; Landsberg et al., 2009). Aerosolized brevetoxin can have strong
negative impacts on local human communities via health issues
(Kirkpatrick et al., 2004; Fleming et al., 2005). Moreover, direct ex-
posure to brevetoxin can alter the sodium-potassium channels of
aquatic vertebrates, eventually leading to death (Kirkpatrick et al.,
2004). Blooms of K. brevis can also indirectly harm marine fauna by
causing excessive hypoxia, turbidity, and shading (Okey et al., 2004;
Landsberg et al., 2009; Klemas, 2012). Persistent blooms can result in
widespread die-offs of fish and other aquatic animals, including pro-
tected species, ultimately impacting the structure of local marine
communities through trophic cascades (Okey et al., 2004; Dupont and
Coy, 2008; Landsberg et al., 2009; Flaherty and Landsberg, 2011) and
reducing the catch rates of local fisheries (Landsberg et al., 2009;
Driggers et al., 2016). Although HAB events have been documented on
the WFS as early as 1844 (Ingersoll, 1881; Rounsefell and Nelson, 1966;
Steidinger et al., 1998), their ecosystem effects are still relatively un-
clear and robust strategies for coping with their economic implications
remain to be established. Understanding HABs is a top research priority
in the Gulf of Mexico, partly because there are concerns that blooms of
K. brevis are increasing in frequency and intensity over time (Brand and
Compton, 2007; Grüss et al., 2017; Harford et al., 2018). Therefore,
there is a need for tools designed specifically to evaluate the potential
ecosystem impacts of HABs to assist management and mitigation efforts
(Heil and Steidinger, 2009).

Sophisticated ecosystem simulation models such as applications of
the trophodynamic Ecopath with Ecosim (EwE) with Ecospace (Walters
et al., 1999, 2010) can explicitly consider a comprehensive suite of
marine organisms, their trophic interactions and the effects of the
abiotic environment on species dynamics. Such models have been
identified as key tools for exploring the potential ecosystem impacts of
HABs on the WFS (Grüss et al., 2017; O’Farrell et al., 2017). The

Ecopath component of EwE provides a static mass-balance representa-
tion of a food web, which serves as a starting point for dynamic mod-
eling (Christensen and Pauly, 1992; Christensen and Walters, 2004).
The Ecosim component of EwE allows one to simulate food web dy-
namics at monthly time steps by altering fishing mortality, fishing ef-
fort, and abiotic environmental forcing functions (Walters et al., 1997,
2000). Finally, the Ecospace component of EwE allows one to simulate
food web and fishing fleet dynamics and changes in the abiotic en-
vironment over time and space (Walters et al., 2010; de Mutsert et al.,
2016).

An EwE model explicitly simulating red tides was previously de-
veloped to evaluate the ecosystem impacts of HABs, referred to here as
“WFS-HAB EwE” (Okey and Mahmoudi, 2002; Okey et al., 2004; Gray,
2014; Sagarese et al., 2015; Gray DiLeone and Ainsworth, 2019).
However, the diet matrix of the basal component of WFS-HAB EwE –
“WFS-HAB Ecopath” – was developed based on reports from the Florida
Fish and Wildlife Research Institute (FWRI), information provided by
FishBase (Froese and Pauly, 2018) and SeaLifeBase (Palomares and
Pauly, 2018), and a variety of stomach content and feeding habit stu-
dies not necessarily specific to the WFS (see Okey and Mahmoudi
(2002) for details). Because much of this information was qualitative
and based on expert knowledge, there was a considerable amount of
uncertainty regarding the diet matrix in the WFS-HAB Ecopath model.
The diet matrix fed into sophisticated ecosystem models, such as EwE
with Ecospace or the Atlantis modeling platform (Fulton et al., 2004,
2011), has a substantial impact on the predictions of these models. In
particular, even small changes in the biomass of prey consumed in
Ecosim, which is based on the diet matrix defined in Ecopath, can result
in the severe depletion of some species, particularly juvenile fishes
(Walters et al., 2008, 2010). Therefore, it is important to build a robust
diet matrix for the Ecopath component of EwE with Ecospace models
(Grüss et al., 2017; O’Farrell et al., 2017). Fortunately, detailed quan-
titative diet data on the WFS are now plentiful due to monitoring efforts
(Grüss et al., 2018a). Moreover, robust statistical modeling approaches

Fig. 1. Map of the West Florida Shelf (WFS) in
the Gulf of Mexico. Depth contours are labeled
in 20−, 40−, 60−, 80−, 100−, 200−,
800−, and 1000−m contours. The area con-
sidered in the WFS-HAB Ecopath model spans
approximately 170,000 km2 between Florida’s
Gulf coast and the 200−m depth contour. This
image was created with ArcGIS using political
boundary data from French and Schenk (2005)
and bathymetry data from Eakins et al. (2011).
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using maximum likelihood are available to estimate diet proportions for
informing ecosystem models (Ainsworth et al., 2010; Masi et al., 2014;
Tarnecki et al., 2016; Sagarese et al., 2016, 2017).

The objectives of this study were to (i) develop a revised diet matrix
for the WFS using predictions of a robust statistical model that in-
corporates local survey data and (ii) evaluate the changes in ecosystem
structure for WFS-HAB Ecopath in response to modifications, including
the revised diet matrix and elevated red tide mortality. Because the
static ecosystem structure provided by Ecopath serves as a starting
point for dynamic modeling with Ecosim and spatio-temporal modeling
with Ecospace, the revised diet matrix would refine the representation
of the spatio-temporal dynamics of red tides within the WFS and im-
pacts on vulnerable species groups for future simulations (Grüss et al.,
2018b). First, we reviewed the Ecopath modeling approach and the
development of the base WFS-HAB Ecopath model considered in this
study (i.e., Gray, 2014; Gray DiLeone and Ainsworth, 2019). Second,
we developed a revised diet matrix for WFS-HAB Ecopath based on
predictions from a statistical model using the Dirichlet distribution
fitted to empirical diet data (Ainsworth et al., 2010; Masi et al., 2014;
Tarnecki et al., 2016; Sagarese et al., 2016, 2017). We compared this
revised diet matrix to the diet matrix described in the base WFS-HAB
Ecopath model to evaluate changes in predator-prey linkages, prey
preferences, and similarities. Third, we developed four alternative
versions of the WFS-HAB Ecopath in a factorial design with the base
and revised diet matrices, and low versus elevated red tide mortalities.
Finally, we compared ecosystem structure across the four alternative
versions of WFS-HAB Ecopath by exploring (i) PREBAL diagnostics
(Link, 2010, 2016), (ii) basic estimates of Ecopath (e.g., trophic levels
(TL), and mortality rates), and (iii) trophic metrics including mixed
trophic impact indices (Ulanowicz and Puccia, 1990), trophic interac-
tion strengths, and omnivory indices (Pauly et al., 1993).

2. Materials and methods

2.1. The Ecopath modeling approach and the WFS-HAB Ecopath model

2.1.1. The Ecopath modeling approach
Ecopath is a mass-balance approach for describing the trophic

structure of an aquatic ecosystem (Christensen and Pauly, 1992; Pauly
et al., 2000). In Ecopath, a comprehensive suite of functional groups
(i.e., groups of species that have similar trophic, life history and niche
characteristics) are explicitly considered, typically including detritus
groups, primary producer groups, and invertebrate, fish, turtle, seabird
and mammal groups (Pauly et al., 2000). These functional groups are
represented either as single biomass pools or as multi-stanza functional
groups that account for ontogenetic shifts in habitat and/or diet
(Walters et al., 2008). Ecopath relies on two master equations that (i)
limit loss terms to no more than that group’s available production (Eq.
(1)), and (ii) define the group’s productivity with respect to its con-
sumption and maintenance needs (Eq. (2)) (Christensen and Walters,
2004):

= + ∙ + + +P Y B M E BA M2 0i i i i i i i (1)

= − −P Q R Ui i i i (2)

where Pi is the production of group i; Yi is the fisheries yield for group i;
Bi is the biomass of group i; M2i is the total predation mortality rate of
group i; Ei is the net migration (emigration - immigration) rate of group
i; BAi is the biomass accumulation rate of group i; M0i is the “other
mortality” rate of group i, which is equivalent to Pi·(1-EEi), where EEi is
the ecotrophic efficiency of group i which represents the production of
group i explicitly considered within the modeled system; Qi is the
consumption of group i; Ri is the respiration of group i; and Ui is the
unassimilated food of group i.

These two equations can be re-expressed as:
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where (P/B)i is the production of group i per unit of biomass (i.e., the
productivity of group i), which is equal to the total mortality rate of
group i (Christensen and Walters, 2004); (Q/B)i is the consumption rate
of group i per unit of biomass; DCij is the element of the diet matrix fed
into Ecopath that describes the proportion of group i in the diet of group
j; and n is the total number of groups represented in the Ecopath model.
For each group i, an Ecopath model requires at least three of the fol-
lowing four data inputs: Bi; (P/B)i; (Q/B)i; and EEi. If one of these four
data inputs is not provided by the user, the missing data input is esti-
mated during the mass-balance process. During the mass-balance pro-
cess, Ecopath estimates several quantities that are useful to characterize
the structure of the modeled system, such as the TL of functional
groups.

2.1.2. The WFS-HAB Ecopath model
The conceptual model in Fig. 2 summarizes the evolution of the first

WFS-HAB Ecopath model (Okey and Mahmoudi, 2002; Okey et al.,
2004) to the WFS-HAB Ecopath model considered herein (Gray, 2014;
Gray DiLeone and Ainsworth, 2019). First, the Ecopath model was
updated to reflect the WFS ecosystem in 2014 by reparametrizing
biomass, landings and productivity. Second, functional groups not
present in the first WFS-HAB Ecopath model (Okey and Mahmoudi,
2002; Okey et al., 2004) but considered vulnerable to HABs were added
based on literature (Steidinger et al., 1973) and the FWRI fish kill da-
tabase (Florida Fish and Wildlife Research Institute, 2015). The FWRI
fish kill database consists of publicly reported approximate numbers
and species of dead fishes seen along the WFS coast during K. brevis
blooms. In total, WFS-HAB Ecopath explicitly considers 81 functional
groups, including two marine mammal groups (dolphins and mana-
tees), one seabird group, one turtle group, 49 fish groups (of which 11
are multi-stanza groups representing adults and juveniles), 19 in-
vertebrate groups (of which one is a multi-stanza group representing
adults and juveniles, and four are zooplankton groups), one microbial
heterotroph group, five autotroph groups, and three detritus groups
(Appendix Table A.1). Third, catch-per-unit-effort (CPUE) time series of
biomass and landings were used to reparametrize WFS-HAB Ecopath to
1980 values (i.e., the historical model, which serves as the starting
point for future dynamic simulations). The historical model allowed for
simulations to investigate the model’s ability to recreate observed time
series (Gray, 2014; Gray DiLeone and Ainsworth, 2019).

The fourth step for updating WFS-HAB Ecopath was the integration
of HAB mortality (Fig. 2), which was accomplished using a pseudo-
fishing fleet referred to as the “HAB fleet”. This “fleet” comes in addi-
tion to the ten fishing fleets explicitly considered in WFS-HAB Ecopath
(trawl, recreation, headboats, gill/trammel net, spear/gig, hook/line,
purse seine, haul seine, long line, and traps). The HAB fleet is a discard-
only fleet, so the biomass “caught” by the HAB fleet is immediately
cycled into the detritus pools and, consequently, immediately available
to detritivore functional groups (Gray, 2014; Gray DiLeone and
Ainsworth, 2019). In essence, the HAB fleet acts as a mortality forcing
function which differs from the forcing function routine within EwE
(Christensen et al., 2008). The FWRI fish kill database (Florida Fish and
Wildlife Research Institute, 2015) was used to determine the functional
groups vulnerable to red tides, and to construct an index of vulner-
ability to red tides for each functional group based on their prevalence
in the database (Gray, 2014; Gray DiLeone and Ainsworth, 2019). Gray
DiLeone and Ainsworth (2019) described in detail how an index of
vulnerability to red tides was developed such that the functional groups
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that are more numerous in the fish kill database are more strongly af-
fected by red tides in the WFS-HAB Ecopath model. Of the functional
groups in WFS-HAB Ecopath, 38 correspond to species vulnerable to red
tide (Appendix Table A.2; Gray, 2014; Gray DiLeone and Ainsworth,
2019). Applying the mortality effect to multiple functional groups al-
lowed for the examination of interactions. Their method has been em-
ployed in other studies (e.g., Sagarese et al., 2017).

2.2. The development of alternative versions of WFS-HAB Ecopath

To evaluate the relative effects of improved diet information and
elevated red tide mortality on the static snapshot in WFS-HAB Ecopath,
we developed four alternative versions of WFS-HAB Ecopath: (i) the
base WFS-HAB Ecopath model used in Gray (2014) and Gray DiLeone
and Ainsworth (2019), which is fed with a highly uncertain diet matrix
and represents WFS HABs of 1980, a year characterized by very weak
red tide events; hereafter, we refer to this model as the “Base” model
(Gray, 2014; Gray DiLeone and Ainsworth, 2019); (ii) a model with a
revised diet matrix (referred to as the “Revised Diet” model): (iii) a
model with elevated red tide mortality (referred to as the “Elevated
HAB Mortality” model); and (iv) a model with both a revised diet
matrix and elevated red tide mortality (referred to as the “Revised Diet
and Elevated HAB Mortality” model). The rationale behind the con-
sideration of these four alternative versions of WFS-HAB Ecopath was to
evaluate the impacts of using a revised diet matrix on the trophic
structure in WFS-HAB Ecopath, in the presence of very weak or severe
red tide events.

2.2.1. Construction of a revised diet matrix for WFS-HAB Ecopath and
attendant analyses

We constructed a revised diet matrix by employing a statistical
model using the Dirichlet distribution and maximum likelihood esti-
mation (Ainsworth et al., 2010; Masi et al., 2014; Tarnecki et al., 2016;
Sagarese et al., 2016, 2017). This methodology allowed us to develop a
diet matrix based on a large empirical diet dataset while (i) avoiding
overestimation of the proportion of rarely consumed prey items in the
diet of predators (Walters et al., 2006; Ainsworth et al., 2010); and (ii)
allowing the estimation of error ranges of diet proportion estimates.
Fish diet data for the statistical model were obtained from: (i) the
Florida Fish and Wildlife Conservation Commission (FWC)’s Fisheries
Independent Monitoring (FIM) database, and (ii) the Gulf of Mexico
Species Interactions (GoMexSI) database (Simons et al., 2013; http://

gomexsi.tamucc.edu/). Samples in the FWC dataset consisted of in-
dividual stomach contents recorded in total volume of individual prey
species, while samples in the GoMexSI dataset consisted of individual
stomach contents recorded in volumetric proportions or weight (g) of
individual prey species. Data for analyses were restricted to samples
collected east of 88.0 °W to reflect the WFS ecosystem. A total of 14,989
samples across 43 predatory fish functional groups of the WFS-HAB
Ecopath model were identified, with 14,643 samples obtained from
FWC and 346 samples (from 18 predatory fish functional groups) ob-
tained from the GoMexSI database, with no overlap between data
sources. Prey diversity for each predatory fish group was measured
using the Shannon-Wiener diversity index (Spellerberg and Fedor,
2003).

The diet matrix of WFS-HAB Ecopath was revised using the most
recent and updated information from FWC and GoMexSI diet datasets.
First, diet data was combined from FWC and GoMexSI datasets by
normalizing all data to reflect percent prey proportions per individual
fish. Individual fish species were then aggregated into the appropriate
WFS-HAB functional group and fed into the statistical analysis de-
scribed in Tarnecki et al. (2016). Briefly, we arranged the data into an
82× 82 matrix (predator vs. prey) based on the WFS-HAB Ecopath
functional groups. Given that it would be rare for each predatory fish
group to feed on all WFS-HAB prey groupings, the most-frequently
observed diet proportion throughout the matrix was zero. To correct for
zero-inflation, pseudo-predator stomachs representing time-integrated
diet compositions were created for each of the 43 predatory fish groups
by randomly selecting 15 % of the observed stomachs and averaging the
diet proportions together. Using bootstrapping with replacement
10,000 pseudo-predator stomachs were generated and the bootstrapped
diet proportions were fitted to the Dirichlet density function using
maximum likelihood method. The Dirichlet function is the multivariate
generalization of the beta function – suitable for estimating diet pro-
portions as it is defined on a [0, 1] interval and can take a variety of
shapes (Ainsworth et al., 2010). The marginal beta distributions pro-
vided a mode corresponding to the diet proportion for a given predator-
prey interaction that was most frequently observed, as well as con-
fidence intervals around this mode (Tarnecki et al., 2016). We em-
ployed the “VGLM” function from the “VGAM” R package (Yee and
Wild, 1996) for the maximum likelihood fitting procedure.

A food web diagram illustrating predator-prey connectivity on the
WFS was created based on a hierarchical clustering analysis (Clarke
et al., 2008; Masi et al., 2014). This analysis groups statistically similar

Fig. 2. Conceptual model showing the development of the West Florida Shelf (WFS) Ecopath model explicitly simulating Harmful Algal Bloom (HAB) mortality
described by Gray (2014) and Gray DiLeone and Ainsworth (2019), referred to here as “WFS-HAB Ecopath” (1–4), which was used in this study to develop and
evaluate four alternative Ecopath models (5).
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(α=0.05) functional groups together based on similarity in the Bray-
Curtis measures of distance (Bray and Curtis, 1957) between diets
(Tarnecki et al., 2016). The Bray-Curtis dissimilarity measure was
computed between each pair of samples as:

=
∑ −

∑ +
=

=
D

y y

y y

| |
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i
n

ij ik

i
n

ij ik

1
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where yij is the count of the ith species in the jth sample; yik is the count
of the ith species in the kth sample; and n is the number of species. A
cluster analysis was performed on the dissimilarity measures by com-
puting the cluster mode group averages, as well as a similarity profile
analysis (Clarke et al., 2008) with 999 permutations to produce sig-
nificant (p < 0.05) aggregations of predator groups as hierarchical
clusters.

Comparisons of the revised diet matrix and the diet matrix used in
the base WFS-HAB Ecopath model, referred to herein as the “base diet
matrix”, were made using analyses presented in Tarnecki et al. (2016).
First, to determine differences in predator-prey connectivity between
the base and revised diet matrices, we visually compared the presence/
absence of prey groups amongst predator groups. Then, using similarity
percentages (SIMPER; Clarke et al., 2008), we compared volume and
prey composition between the base and revised diet matrices to mea-
sure resemblance; low percentages revealed high variability whereas
high percentages revealed similar prey contributions and volumes be-
tween the base and revised diet matrices. The SIMPER analysis was
streamlined by classifying predators into the following guilds: “elas-
mobranchs”, “pelagic predatory fishes”, “benthic/demersal fishes”,
“structure associated fishes”, and “planktivorous fishes”. Finally, we
conducted a canonical analysis of principal coordinates (CAP; Anderson
and Willis, 2003) using the Primer statistical package (v6; Clarke and
Gorley, 2006) to reveal guild similarities and dissimilarities between
food webs and potential refinements to guild correlation. The CAP was
performed on the Bray-Curtis measures of distance (Bray and Curtis,
1957), resulting in CAP plots where groups clustered together have
greater similarity in diet composition than groups far apart.

2.2.2. Representation of elevated HAB mortality
Both the Base model and the Revised Diet model used the baseline

HAB mortality rates which represent WFS HABs in 1980, a year char-
acterized by very weak red tide events (Gray, 2014; Gray DiLeone and
Ainsworth, 2019). To represent elevated HAB mortality, both the Ele-
vated HAB Mortality model and the Revised Diet and Elevated HAB
Mortality model were developed to represent WFS HABs in 2005 –
when the WFS experienced some of the most severe red tide events of
the past 40 years (Sagarese et al., 2015). Gray (2014) estimated that the
“effort” of the HAB fleet (i.e., the severity of the red tide events) in 2005
was around 256 % higher than the HAB fleet effort in 1980. Therefore,
to capture elevated HAB mortality we multiplied the baseline HAB fleet
mortality rates of the 38 functional groups vulnerable to HABs by 2.56.
The HAB fleet mortality rates for all alternative versions of WFS-HAB
Ecopath are provided in Appendix Table A.2.

2.3. Evaluation of the mass-balanced alternative versions of WFS-HAB
Ecopath

Following recommended best practices in EwE models (Ainsworth
and Walters, 2015; Heymans et al., 2016), we employed PREBAL di-
agnostics to evaluate each of the mass-balanced alternative versions of
WFS-HAB Ecopath (Link, 2010, 2016). First, we examined trends in log-
scaled biomass (B), production (P), consumption (C), respiration (R)
and vital rates (i.e., P/B, C/B, and R/B) across functional groups and
TLs, with the expectation of these metrics increasing with decreasing TL
(Link, 2010). In addition, biomasses were expected to span five to seven
orders of magnitude from the highest to lowest TL (Link, 2010). Next,
we examined whether the biomasses relative to primary production

(PP), productions relative to PP, and P/B’s relative to PP, as well as the
predator-prey ratios of biomass and vital rates, were below 1 (Link,
2010, 2016). Lastly, additional metrics were calculated for each func-
tional group, including: (i) P/C, which should range between 0.1 and
0.3; (ii) the consumption of the group relative to its production, which
should remain below 1; (iii) the consumption by the group relative to its
production, which should be greater than 1; and (iv) total human re-
movals (i.e., fishing) relative to the consumption of the group, which
should remain below 1 (Link, 2010).

2.4. Analysis of the trophic structure amongst the alternative versions of
WFS-HAB Ecopath

To elucidate the impacts of the revised diet matrix and/or elevated
red tide mortalities on the ecosystem structure of the WFS, we focused
on three indices: (i) mixed trophic impact (MTI) indices, (ii) overall
impact indices (ε), which measure trophic interaction strengths, and
(iii) omnivory indices. The MTI analysis (Ulanowicz and Puccia, 1990)
assesses direct and indirect interactions by quantifying the effect that
group j has on group i, by taking the difference between a term ex-
pressing how much group i contributes to the diet of group j and a term
giving the proportion of the predation on i that is due to j. Computed in
Ecopath, MTIji indices for functional groups are based on predator-prey
linkages whereas MTIji indices for fleets are based on fishing mortality
rates. MTIji indices range from −1 to 1, where a positive MTIji index
indicates that group j has a positive impact on group i, while a negative
MTIji index indicates that group j has a negative impact on group i. The
closer the MTIji index is to the bounds (−1,1) the stronger the impact,
with -1 indicative of top-down control and 1 indicative of bottom-up
control. We used the results from the MTI analysis to compute the
overall impact index for each functional group. The overall impact from
functional group j is the square root of the sum of squared MTIji indices,
excluding MTIjj. Lastly, the omnivory index was calculated for each
functional group, which reflects the variance of prey trophic levels for a
consumer (Pauly et al., 1993; Christensen et al., 2008). Lower omnivory
indices indicate specialized consumers, feeding on few trophic levels,
whereas larger indices indicate consumers that feed on a variety of
trophic levels. Omnivory indices were provided by EwE Version 6.4.3,
but all other indices were based on results from the “Network analysis”
module in EwE Version 5 (Christensen and Walters, 2004) as initial
attempts to use the Network analysis module in EwE Version 6.4.3
failed to converge due to the large number of trophic linkages in WFS-
HAB Ecopath.

3. Results

3.1. Analyses of the revised food web

The diet compositions estimated in this study varied greatly from
one predator to another (see Appendix Table A.3 for maximum like-
lihood diet estimates and 95 % confidence intervals). Piscivorous adult
gag (Mycteroperca microlepis) preyed primarily (82 %) on fish functional
groups including: structure associated coastal omnivores, structure as-
sociated coastal planktivores, juvenile pinfish (Lagodon rhomboides),
structure associated coastal piscivores and the sardine-herring-scad
complex. Coastal sharks had the most diverse diet overall (Appendix
Table A.4), consuming crabs, fishes, shrimps and small infaunal in-
vertebrates.

Hierarchical cluster analyses concentrated the 43 predatory fish
groups into 21 clusters based on similarities in prey consumption
(Appendix Table A.5). In addition, 9 non-fish boxes were created to
complete the WFS food web diagram (Fig. 3). The cluster with the
highest TL was that for large oceanic piscivores (e.g., swordfish, Xiphias
gladius; Spanish mackerel, Scomberomorus maculatus; king mackerel, S.
cavalla), while the groups dead carcasses and sediment detritus had the
lowest trophic levels (Fig. 3). Sediment detritus was the sole food
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source for juvenile and adult striped mullet (Mugil cephalus), while the
group “other mesozooplankton” was the sole food source for nearshore
planktivores (Fig. 3). Adult shrimps were the main food source for
demersal oceanic invertebrate feeders, juvenile gray snapper (Lutjanus
griseus), and structure associated coastal planktivores (Fig. 3).

Comparing the base and revised food webs, we identified marked
differences in predator-prey connections (Fig. 4). The revised food web
incorporated 340 new prey linkages. Of the 43 predatory fish groups
considered in the revised food web, 28 % had more than 10 prey groups
added, 44 % had between 6 and 10 prey groups added, 23 % had be-
tween 1 and 5 prey groups added, and 5 % had no additional prey
groups incorporated. Benthic coastal invertebrate feeders had the lar-
gest number of prey groups added (17). By contrast, juvenile ladyfish
(Elops saurus) and nearshore planktivores showed no dissimilarity in
prey groups between the base and revised food webs. Considering prey
groups, 37 % experienced no change in the total number of predators
with the revised food web, 27 % had between 1 and 5 new predators, 25
% had 6 to 10 new predators, 5 % had 11 to 15 new predators, and 6 %
had 16 or more new predators. The largest increase in predator groups
was for bivalves (20), followed by meiofauna (19).

The SIMPER analysis suggests that diet similarities between the base
and revised food webs vary greatly among functional groups (Fig. 5).
Planktivorous functional groups have the most similar diets between
the base and revised food webs (median 78.25 %), whereas pelagic
predatory fish functional groups have the most dissimilar diets (median
47.5 %). The diet of nearshore planktivores (e.g., anchovies) was the
most similar (88.4 %) between food webs, largely because: (i) zoo-
plankton, ichthyoplankton and copepods were the three main prey
items of nearshore planktivores in the base food web; and (ii) with
respect to nearshore planktivores, revising the WFS food web only re-
sulted in an increase in the proportion of zooplankton, ichthyoplankton
and copepods in the diet of this predator. By contrast, the diet of de-
mersal oceanic invertebrate feeders (e.g., Mullus auratus) was the least
similar (9.3 %) between food webs. While the base food web indicated
that zooplankton, ichthyoplankton and copepods were the primary prey

items of demersal oceanic invertebrate feeders, the revised food web
identified shrimps, crabs as the main prey items.

Regarding the CAP, similarity ranged between −0.2 and +0.4
along the x-axis (CAP1) and between −0.30 and +0.25 along the y-
axis (CAP2) for the base food web (Fig. 6A). A distinct cluster formed
for planktivorous fishes, while broader clusters formed for the re-
maining predator guilds, particularly benthic/demersal fishes and
elasmobranchs. The distribution of predator functional groups differed
in the revised food web (Fig. 6B). For the revised food web, similarity
ranged between −0.4 and +0.2 along the x-axis and between −0.3
and +0.3 along the y-axis (Fig. 6B). A distinct cluster formed for pe-
lagic predatory fishes, while tighter clusters formed for all other pre-
dator guilds. In addition, results from the revised food web generated
less overlap amongst predator guilds than results from the base food
web, especially for benthic/demersal fishes and elasmobranchs
(Figs. 6B vs. A).

3.2. Balance of the alternative WFS-HAB Ecopath models and evaluation of
the mass-balanced models

The alternative versions of the WFS-HAB Ecopath model developed
for the present study did not immediately balance. For the Elevated
HAB Mortality model, the ecotrophic efficiency (EE) of nearshore as-
sociated piscivores estimated by the Base model (0.9) was ultimately
used as input because the initial estimated EE exceeded 1 (1.03). Both
the Revised Diet model and the Revised Diet and Elevated HAB
Mortality model did not immediately balance because: (i) the estimated
biomass for large oceanic planktivores was 0 t km−2; and (ii) the esti-
mated EE for adult shrimps was over 1 (13.52). We employed the
biomass of large oceanic planktivores (0.073 t km−2) and the EE of
adult shrimps (0.884) estimated by the Base model as inputs in both the
Revised Diet model and the Revised Diet and Elevated HAB Mortality
model. These decisions allowed all models to balance while keeping
them directly comparable to the Base model.

A majority of the PREBAL diagnostics for the Base model were met,

Fig. 3. Food web diagram illustrating predator-prey connectivity in the West Florida Shelf (WFS) region. Each box represents a cluster from the hierarchical cluster
analysis and is named after the WFS-HAB Ecopath predator functional group containing the highest biomass estimates (Appendix Table A.5 details the WFS-HAB
Ecopath functional groups composing the hierarchical clusters). Box areas are proportional to log biomass estimates and arrows indicate the flow of energy from prey
to predators. Dotted lines indicate groups with≥10 %−20 % prey contributions, thin solid lines represent prey contributions ranging from>20 %−40 %, and thick
solid lines indicate> 40 % prey contributions. Diets< 10 % were omitted from the food web diagram. The estimated trophic level of each grouping is indicated on
the y-axis.
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Fig. 4. Diet comparisons between the base and revised food webs for the WFS-HAB Ecopath model. Grey boxes indicate predator (rows) – prey (columns) linkages
that are present in both food webs, while black boxes indicate predator – prey linkages that are present in the revised food web but not in the base food web.
Predators are presented in order of number of new prey additions.
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suggesting that the inputs and estimates of this model were biologically
reasonable (Appendix Figs. B.1–B.4). Although some PREBAL diag-
nostics were not met, Link (2010) and Heymans et al. (2016) both
emphasize this is acceptable as long as departures from the proposed
guidelines can be explained (see Appendix B for details in our case).
Using elevated red tide mortality rates in WFS-HAB Ecopath had no
influence on PREBAL diagnostics. By contrast, incorporating the revised
diet matrix into WFS-HAB Ecopath had a small impact on PREBAL di-
agnostics, largely due to the different TLs estimated in Ecopath (Ap-
pendix B).

3.3. Impacts of using the revised diet matrix or elevating red tide mortality
on Ecopath estimates

Basic estimates from Ecopath consisted of the four data inputs re-
quired for initiating the mass-balance process (B, (P/B), (Q/B), and EE;
see subsection 2.1.1), and quantities for characterizing the structure of
the modeled ecosystem (e.g., the TL of functional groups). Overall,
using elevated red tide mortality rates had a negligible impact on
Ecopath basic estimates (results not shown), while employing the re-
vised diet matrix in WFS-HAB Ecopath impacted only some of Ecopath
basic estimates (Table 1).

Revising the Ecopath diet matrix had a large impact on the TLs of

functional groups (Table 1). TL estimates increased or decreased by
more than 1 % for around 57 % of the functional groups represented in
WFS-HAB Ecopath. Most of these functional groups (89 %) experienced
an increase in TL, with the largest increase in TL observed for adult
pinfish (34.3 %). A few functional groups experienced a (minor) de-
crease in TL. Adult and juvenile mullet experienced the largest reduc-
tions in TL (10 % and 7 %, respectively). Of the 22 % of functional
groups that experienced no change in TL, most belonged to the base of
the food web (e.g., detritus and plankton groups). The changes in TL
estimates caused by using the revised food web resulted in a re-ordering
and expansion of the system’s trophic flow (Table 1). The Base model
had TLs up to 4.58, with large oceanic piscivores occupying the top of
the food web, followed by coastal sharks (TL= 4.41) and pelagic
coastal piscivores (TL=4.34). Employing the revised diet matrix re-
sulted in a food web where adult Spanish mackerel had the largest TL
(TL=4.91), followed by large oceanic piscivores (TL= 4.85) and
benthic oceanic piscivores (TL=4.83).

Total mortality rates, equated to P/B’s (Section 2.1.1), were similar
across the alternative versions of WFS-HAB Ecopath, because they were
defined before initiating the mass-balance process and, therefore, were
unchanged during the mass-balance process. However, specifying ele-
vated red tide mortality and/or employing the revised diet matrix often
had an impact on the relative importance of the different sources of

Fig. 5. Percent diet and similarity percentages (SIMPER, numbers above graph) of predator categories (x-axis) comparing the base and revised food webs for the
WFS-HAB Ecopath model, referred to here as the “WFS” and “Rev” food webs, respectively. To facilitate comparisons, the graphs were constructed for predator
groups using prey grouped into 14 guilds.
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mortality of a functional group (Fig. 7 and Appendix Fig. A.1). As ex-
pected, specifying elevated red tide mortality increased the contribu-
tion of red tide mortality to the total mortality for all functional groups
vulnerable to red tide. Because total mortality rate did not change for
any functional group, Ecopath accommodated increased red tide mor-
tality by reducing the contribution of natural mortality to the total
natural mortality (Fig. 7); this was particularly the case for adult gag,
demersal coastal invertebrate feeders and adult red grouper (Epine-
phelus morio). Specifying elevated red tide mortality slightly reduced
the contribution of fishing mortality to the total mortality of nearshore
planktivores and large groupers (Fig. 7). By contrast, using the revised
diet matrix resulted in an increased contribution of fishing mortality to
total mortality for some of the functional groups, which was accom-
plished by a reduction of the contribution of natural mortality to total
mortality. The largest increases in fishing mortality occurred for large
groupers and the “other fishes” group (Fig. 7). Moreover, employing the
revised diet caused the contribution of red tide mortality to total
mortality to increase for nearshore planktivores and large groupers

(Fig. 7). Results for the Elevated HAB Mortality and Revised Diet model
suggest that changes in mortality patterns are not influenced by the
interaction between elevated red tide mortality and the revised diet
matrix (Fig. 7 and Appendix Fig. A.1).

3.4. Trophic structure amongst the alternative versions of WFS-HAB
Ecopath

3.4.1. Mixed trophic impact (MTI) analysis
Elevated red tide mortality rates had minor impacts on the out-

comes of the MTI analysis (Appendix Figs. C.1–C.4), whereas using the
revised diet matrix in WFS-HAB Ecopath greatly altered the MTI out-
comes (Appendix Fig. C.5). Changes in MTI indices were the most
common amongst functional groups of macrofauna. First, using the
revised diet matrix in WFS-HAB Ecopath reduced or reversed some of
the negative impacts amongst some fish groups (Appendix Fig. C.5). For
instance, in the Base model, large oceanic piscivores had some of the
largest negative impacts on functional groups (i.e., large oceanic

Fig. 5. (continued)
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piscivores: −0.72; adult gray snapper: −0.44; mackerels: −0.33),
whereas these impacts were reduced or reversed in the Revised Diet
model (e.g., +0.01, -0.14, and +0.001, respectively). Second, using the
revised diet matrix in WFS-HAB Ecopath resulted in the amplification
or creation of positive impacts between fish groups (Appendix Fig. C.5).
For instance, in the Base model, nearshore planktivores had minor
positive impacts on juvenile ladyfish (+0.12) and adult ladyfish
(+0.03), whereas these positive impacts were amplified in the Revised
Diet model (+0.53 and +0.28, respectively). Third, benthic groups
primarily benefited teleosts in both the Base and Revised Diet models,
yet the positive impacts of benthic groups on teleosts were stronger in
the Revised Diet model (Appendix Fig. C.5). This was particularly no-
table for adult shrimps, which generally had a very strong positive
impact on teleosts when the revised diet matrix was employed in WFS-
HAB Ecopath (e.g., juvenile gray snapper: +0.52; demersal oceanic
invertebrate feeders: +0.50; juvenile lane snapper, L. synagris: +0.47;
adult lane snapper: +0.45). Fourth, there were a few instances where
substituting the base diet matrix with the revised diet matrix in WFS-
HAB Ecopath led to an amplification of negative impacts from biota
(Appendix Fig. C.5). This was particularly notable for squids, which had
a very strong negative impact on many functional groups in the Revised
Diet model (e.g., pelagic oceanic jelly feeders: −0.47; nearshore
planktivores: −0.35; demersal coastal piscivores: −0.34).

The MTI analyses conducted for the Base and Revised Diet WFS-
HAB Ecopath models indicated that biota positively influenced fishing
fleets, while fishing fleets negatively influenced biota (Appendix Fig.
C.5). However, employing the revised diet matrix in WFS-HAB Ecopath
caused an intensification of some of the negative impacts that fishing
fleets had on marine biota, while having no influence on the positive
impacts that biota had on fishing fleets (Appendix Fig. C.5). The in-
tensification of the negative impacts of fishing fleets on biota were
particularly notable for the trawl and recreational fleets. In the Base
model, the most deleterious impact from trawls was upon benthic
oceanic piscivores (−0.30), whereas in the Revised Diet model, trawls
had more prevalent intense, deleterious impacts on biota (e.g., benthic

oceanic piscivores: −0.71; demersal oceanic invertebrate feeders:
−0.71; benthic oceanic invertebrate feeders: −0.5). In the Base model,
the most deleterious impact from the recreational fleet was upon adult
gag (−0.44), whereas, in the Revised Diet model, the recreational fleet
had more intense and negative impacts on biota (e.g., adult grey
snapper: −0.75; juvenile red grouper: −0.50; adult gag: −0.43).
Moreover, employing the revised diet matrix in WFS-HAB Ecopath re-
sulted in the longline fleet as the only fishing fleet with a notably po-
sitive impact on biota (juvenile gag: +0.87). This may be a result of the
long line fleet reducing the seabird predation on juvenile gag given the
strong negative impact the longline fleet has on seabirds (−0.88) and
the strong negative impact seabirds have on juvenile gag (−0.97).

MTI indices from the red tide pseudo-fleet were predominantly
negative across impacted groups for all WFS-HAB Ecopath models.
However, red tide impacts were influenced by both specifying elevated
red tide mortality and using the revised diet matrix (Fig. 8). Deleterious
impacts from red tide were the least intense in the Base model because
the structure of the WFS ecosystem in the Base model was characterized
by a very weak red tide event (Gray, 2014). Employing the revised diet
matrix in WFS-HAB Ecopath amplified the negative impacts of red tide
on some functional groups and fishing fleets (Fig. 8), including skates
and rays (−0.68), juvenile red drum (Sciaenops ocellatus) (−0.64),
adult red grouper (−0.18), the red grouper fleet (−0.18), nearshore
associated piscivores (−0.15), adult gag (−0.15) and sea turtles
(−0.13). There were some instances where using the revised diet ma-
trix in WFS-HAB Ecopath alleviated the negative MTI indices associated
with the red tide pseudo-fleet (e.g., demersal coastal invertebrate fee-
ders) or promoted positive MTIs from the red tide pseudo-fleet (e.g.,
structure associated invertebrate feeders and juvenile blue crab, Calli-
nectes sapidus). As expected, specifying elevated red tide mortality in
WFS-HAB Ecopath amplified the impacts from red tide (Appendix Figs.
C.3 and C.4).

3.4.2. Overall impact (ε) indices
Substituting the base diet matrix with the revised diet matrix in

Fig. 5. (continued)
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WFS-HAB Ecopath had an impact on ε indices (Fig. 9), whereas ele-
vating red tide mortality had no impact on ε indices (Appendix Table
C.1). Overall, the ε indices in the Revised Diet model differed from the
Base model, with adult shrimps displaying the largest increase in the ε
index with the revised diet matrix, followed by seabirds (Fig. 9). The
increased overall impacts from seabirds, as well as dolphins, were
particularly noteworthy as these groups are often underdeveloped in
end-to-end models (Goedegebuure et al., 2017). Pelagic coastal pisci-
vores had the second largest decrease in the ε index with the revised
diet matrix, following juvenile striped mullet (Fig. 9). While the Base
model suggested that pelagic coastal piscivores had the largest impact
on ecosystem structure (ε=1.52), the Revised Diet model suggested
that adult shrimps filled that role (ε=1.35). Pelagic coastal piscivores
still had a relatively large impact in the Revised Diet model (ε=0.92),
but, by contrast, adult shrimps had no significant impact in the Base
model (ε=0.38). Third, dolphins (ε=1.18), squid (ε=1.17), struc-
ture associated invertebrate feeders (ε=1.15) and sardine/herring
(ε=1.06) had relatively large impacts in the Revised Diet model, while
small mobile epifauna (ε=1.26) and sardines/herrings (ε=1.21) had
relatively large impacts in the Base model. Lastly, both the Base and
Revised Diet models resulted in manatees having the weakest influence
on the structure of the WFS ecosystem (ε=0.001 for both models).

3.4.3. Omnivory indices (OI)
Substituting the base diet matrix with the revised diet matrix in

WFS-HAB Ecopath impacted omnivory indices (Fig. 10), while ele-
vating red tide mortality had no impact on omnivory indices (Appendix
Table C.2). The majority of functional groups (53 %) had higher om-
nivory indices in the Revised Diet model, indicating that groups had a
tendency to be more omnivorous in this model. The omnivory index
increased the most for juvenile pinfish (Base OI=0.08; Revised Diet
OI=0.69), and surface pelagics displayed the highest omnivory index
in both models (Base OI=0.86; Revised Diet OI=1.01). About 30 % of
the functional groups became less omnivorous and more selective in the
Revised Diet model. The omnivory index decreased the most for juve-
nile striped mullet between models (Base OI=0.55; Revised Diet
OI=0.19). The system omnivory index (i.e., the average omnivory
index of all consumers weighted by the logarithm of each consumers
food intake; Christensen et al., 2008) from the Base model was 0.22,
which is comparable to other models of the Gulf of Mexico (Okey et al.,
2004; Sagarese et al., 2017). The Revised Diet model exhibited a
slightly less omnivorous system (OI=0.20) because groups with higher
weighted food intakes had a tendency to have reduced omnivory in-
dices in the Revised Diet model (Appendix Table C.2).

4. Discussion

In the present study, we estimated a revised diet matrix for an
Ecopath model describing the structure of the WFS ecosystem from a
large, empirical diet dataset. The revised diet matrix had around 340

Fig. 6. Canonical analysis of principal coordinates (CAP) plots illustrating the distribution of predator fish functional groups in the base (A) and revised (B) food webs
for the WFS-HAB Ecopath model with respect to diet. For both panels, each individual symbol represents a WFS-HAB Ecopath fish functional group, while symbol
shapes indicate the predator guild to which the fish functional groups belong. Appendix Table A.5 details the WFS-HAB Ecopath functional groups composing the
hierarchical clusters.
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Table 1
Basic estimates of the WFS-HAB Ecopath model. Values are presented for alternative versions of the WFS-HAB Ecopath model: the versions using the base diet matrix
(Gray, 2014; the “Base” and “Elevated HAB Mortality” models); and the versions using the revised diet matrix (the “Revised Diet” and “Revised Diet and Elevated
HAB Mortality” models). All alternative versions of the WFS-HAB Ecopath model exhibited the displayed values, but the alternative versions using the revised diet
matrix had different values for some of the estimates which are displayed within square brackets. Values in bold were estimated by Ecopath. TL= trophic level;
EE= ecotrophic efficiency; B= biomass; P= production; Q= consumption; R= respiration. The functional groups represented in WFS-HAB Ecopath were each
assigned a short name and an ID, which are also given in this table.

Functional group (Abbreviation) TL EE B (t. km−2) P/B (yr−1) Q/B (yr−1) R/B (yr−1) P/Q

1 Dolphins (DOL) 4.34 [4.60] 0.01 0.04 0.16 40.44 32.19 0.00
2 Seabirds (SEA) 4.21 [4.47] 0.01 0.00 0.30 80.00 63.70 0.00
3 Turtles (TUR) 3.32 0.38 0.00 0.19 3.50 2.61 0.05
4 Manatees (MAN) 2.00 0.09 0.00 0.10 36.50 21.80 0.00
5 Large oceanic piscivores (LOP) 4.58 [4.86] 0.20 0.14 0.68 7.40 5.24 0.09
6 Large oceanic planktivores (LPL) 3.73 [3.81] 0.50 0.07a 0.11 1.80 1.15 0.06
7 Coastal sharks (SHK) 4.41 [4.59] 0.95 0.11 0.41 3.29 2.22 0.12
8 Rays and skates (RAY) 3.63 [3.41] 0.60 0.15 0.85 7.72 5.33 0.11
9 Pelagic oceanic piscivores (POP) 4.34 [4.57] 0.85 0.57 1.06 7.20 4.70 0.15
10 Pelagic coastal piscivores (PCP) 4.25 [4.21] 0.95 0.40 0.70 9.23 6.68 0.08
11 Mackerel (MAC) 4.22 [4.42] 0.95 0.08 0.80 8.00 5.60 0.10
12 Red grouper juvenile (RGR1) 3.83 [4.15] 0.80 0.02 0.50 14.60 11.18 0.03
13 Red grouper adult (RGR2) 4.05 [4.42] 0.78 0.17 0.31 6.25 4.69 0.05
14 Spanish mackerel juvenile (SMK1) 4.08 [4.16] 0.93 0.02 0.90 46.79 36.53 0.02
15 Spanish mackerel adult (SMK2) 4.12 [4.91] 0.95 0.08 0.55 21.78 16.87 0.03
16 Gag juvenile (GAG1) 4.11 [4.22] 0.95 0.00 2.00 18.90 13.12 0.11
17 Gag adult (GAG2) 4.13 [4.41] 0.40 0.03 0.44 4.97 3.54 0.09
18 Red drum juvenile (RDM1) 3.53 [3.94] 0.95 0.01 1.40 12.06 8.25 0.12
19 Red drum adult (RDM2) 3.62 [4.26] 0.95 0.01 0.95 5.75 3.65 0.17
20 Striped mullet juvenile (SMU1) 2.32 [2.17] 0.31 0.20 1.50 50.27 38.72 0.03
21 Striped mullet adult (SMU2) 2.24 [2.03] 0.95 0.13 1.00 29.7 22.76 0.03
22 Lane snapper juvenile (LSN1) 3.53 [3.94] 0.95 0.02 1.00 20.56 15.45 0.05
23 Lane snapper adult (LSN2) 3.53 [4.20] 0.95 0.19 0.6 8.02 5.82 0.07
24 Gray snapper juvenile (GSN1) 4.05 [4.06] 0.54 0.03 0.75 16.23 12.24 0.05
25 Gray snapper adult (GSN2) 4.10 [4.34] 1.00 0.19 0.75 7.29 5.09 0.10
26 Crevalle jack juvenile (CJK1) 4.22 [4.29] 0.74 0.02 2.00 14.48 9.58 0.14
27 Crevalle jack adult (CJK2) 4.33 [4.47] 1.00 0.04 0.80 5.06 3.25 0.16
28 Pinfish juvenile (PIN1) 3.33 [3.44] 0.95 1.14 2.00 26.34 19.07 0.08
29 Pinfish adult (PIN2) 2.97 [3.99] 0.95 1.49 0.91 11.34 8.17 0.08
30 Mojarras juvenile (MOJ1) 3.23 0.95 0.11 1.60 26.15 19.32 0.06
31 Mojarras adult (MOJ2) 3.18 0.95 0.54 0.80 10.96 7.96 0.07
32 Ladyfish juvenile (LDF1) 4.05 [4.26] 0.95 0.02 1.40 17.21 12.36 0.08
33 Ladyfish adult (LDF2) 4.11 [3.97] 0.95 0.09 0.58 6.84 4.89 0.08
34 Sardine-Herring-Scad complex (SAR) 3.08 [3.20] 0.98 1.70 2.30 12.11 6.17 0.19
35 Pelagic oceanic jelly eaters (PJL) 4.17 [4.18] 0.95 0.30 1.56 8.07 4.90 0.19
36 Pelagic oceanic planktivores (PPL) 3.39 [4.03] 0.95 1.94 0.87 11.71 7.33 0.07
37 Demersal oceanic invert. feeders (DOI) 3.42 [3.93] 0.95 0.01 1.20 15.76 11.41 0.08
38 Demersal coastal piscivores (DCP) 4.13 [4.10] 0.87 0.12 0.80 6.33 4.27 0.13
39 Demersal coastal invert. feeders (DCI) 3.50 [3.68] 0.98 0.34 0.85 7.92 5.48 0.11
40 Demersal coastal omnivores (DCO) 2.93 [3.54] 0.97 0.14 1.34 15.13 10.76 0.09
41 Benthic oceanic piscivores (BOP) 4.10 [4.84] 0.95 0.01 0.45 7.94 5.90 0.06
42 Benthic oceanic invert. feeders (BOI) 3.50 [4.09] 0.95 0.02 1.50 15.78 11.12 0.10
43 Benthic coastal piscivores (BCP) 4.00 [4.71] 0.91 0.24 0.55 8.39 6.16 0.07
44 Benthic coastal invert. feeders (BCI) 3.43 [3.94] 0.79 0.77 0.86 10.11 7.23 0.09
45 Surface pelagics (SPL) 2.92 [2.97] 0.95 0.11 [0.24] 2.60 11.70 6.76 0.22
46 Structure assoc. coastal piscivores (SAP) 4.04 [4.64] 0.95 0.26 0.63 5.40 3.69 0.12
47 Large groupers (LGP) 4.17 [4.52] 0.95 0.03 [0.01] 0.46 4.10 2.82 0.11
48 Structure assoc. coastal invert. feeders (SCI) 3.47 [3.95] 0.29 4.84 0.75 7.33 5.12 0.10
49 Structure assoc. coastal omnivores (SCO) 2.48 [3.32] 0.88 0.60 1.33 24.37 18.17 0.05
50 Structure assoc. coastal planktivores (SCP) 3.48 [3.75] 0.75 0.27 2.00 10.00 5.00 0.20
51 Nearshore assoc. piscivores (NRP) 4.15 [4.52] 0.90 [0.38]b 0.01 1.06 7.67 5.08 0.14
52 Nearshore planktivores (NPL) 3.23 [3.49] 0.99 3.01 [2.57] 2.00 15.92 9.14 0.13
53 Other fishes (OTH) 3.39 [3.61] 0.95 4.05 [1.33] 1.30 7.04 4.33 0.18
54 Squid (SQU) 3.70 [3.72] 0.99 1.50 3.00 35.00 19.75 0.09
55 Adult shrimps (SHP) 2.89 0.88a 0.52 5.38 19.20 6.14 0.28
56 Lobsters (LOB) 2.92 0.95 0.10 0.90 8.20 4.43 0.11
57 Large crabs (CRB) 3.09 0.95 0.61 2.30 8.50 3.23 0.27
58 Blue crab juvenile (BCB1) 3.05 0.95 0.01 2.00 18.02 12.42 0.11
59 Blue crab adult (BCB2) 3.07 0.98 [0.36] 0.10 1.10 9.94 6.85 0.11
60 Octopods (OCT) 3.39 [3.43] 0.95 0.17 [0.0004] 3.10 11.70 7.08 0.26
61 Stomatopods (STP) 3.19 [3.20] 0.92 0.43 1.34 8.90 4.90 0.15
62 Echinoderms and large gastropods (ECH) 2.40 0.45 19.25 1.20 3.70 0.43 0.32
63 Bivalves (BIV) 2.15 0.23 48.60 1.21 23.00 10.29 0.05
64 Sessile epibenthos (SEP) 2.39 0.28 219.00 0.80 9.00 2.80 0.09
65 Small infauna (SMI) 2.31 0.55 19.03 4.60 15.90 3.35 0.29
66 Small mobile epifauna (SME) 2.35 0.95 14.12 [9.39] 7.01 27.14 7.92 0.26
67 Meiofauna (MEI) 2.36 0.85 13.00 12.50 25.00 1.25 0.50
68 Small Copepods (COP) 2.15 0.95 8.60 17.30 60.00 12.70 0.29
69 Other mesozooplankton (OMS) 2.50 0.98 6.70 17.30 45.00 5.20 0.38

(continued on next page)
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predator-prey linkages that were not present in the diet matrix used in
the base WFS-HAB Ecopath model. Thus, the revised diet matrix re-
presented a more complex food web. However, there were some pre-
dator-prey linkages in the base diet matrix that were not retained in the
revised diet matrix because of the low frequency of those predator-prey
interactions in the diet dataset employed in the present study. The more
complex food web estimated for the WFS resulted in a reduction of the
predation mortality rates of many of the prey groups represented in the

WFS-HAB Ecopath model, including many prey groups that are directly
affected by red tides (e.g., adult gag, juvenile red grouper, adult red
grouper). A large reduction in predation mortality rates may be rea-
sonable for adult fish groups, but less so for juvenile fish groups, such as
juvenile red grouper, as these juvenile fishes are generally reported to
suffer high predation mortality rates in the wild (Sogard, 1997; Almany
and Webster, 2006). To accurately estimate juvenile fish predation
mortality rates, additional collection of predatory fish stomachs in the

Table 1 (continued)

Functional group (Abbreviation) TL EE B (t. km−2) P/B (yr−1) Q/B (yr−1) R/B (yr−1) P/Q

70 Carnivorous zooplankton (CZO) 2.97 0.45 21.60 8.70 17.00 1.50 0.51
71 Ichthyoplankton (ICH) 2.94 0.86 [0.68] 0.05 50.45 132.13 28.83 0.38
72 Carnivorous jellyfish (CJL) 3.38 0.52 0.27 37.00 80.00 35.00 0.46
73 Microbial Heterotrophs (MHT) 2.00 0.88 40.00 40.00 80.00 24.00 0.50
74 Macroalgae (ALG) 1 0.46 36.05 4.00
75 Microphytobenthos (MPB) 1 0.57 29.78 23.73
76 Phytoplankton (PHY) 1 0.46 20.00 160.00
77 Sea grasses (SGR) 1 0.02 175.62 9.01
78 Dead carcasses (DCA) 1 0.45 [0.46] 3.00
79 Sediment detritus (SED) 1 0.51 390.00
80 Water column detritus (WDT) 1 0.57 125.00
81 Drift macrophytes (DMA) 1 0.12 [0.11] 2.66

a The value estimated by the base WFS-HAB Ecopath model was employed as input in the alternative versions of WFS-HAB Ecopath using the revised diet matrix.
b The value estimated by the base WFS-HAB Ecopath model was employed as input in the alternative version of WFS-HAB Ecopath with elevated harmful algal

bloom mortality and using the base diet matrix.

Fig. 7. Contribution of natural mortality, red tide mortality and fishing mortality to the total mortality of select functional groups represented in the WFS-HAB
Ecopath model. Proportions of total mortality are provided here for each alternative version of the WFS-HAB Ecopath model: the base version (“Base”); the version
with elevated red tide mortality (“Elevated HAB Mortality”); the version with the revised diet matrix (“Revised Diet”); and the version with both the revised diet
matrix and elevated red tide mortality (“Revised Diet and Elevated HAB Mortality”). Here, we consider only the functional groups that experienced the largest
changes in the contribution of natural mortality, red tide mortality and fishing mortality to the total mortality; results for all the other functional groups represented
in WFS-HAB Ecopath are shown in Appendix Fig. A.1).
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WFS region will be needed, particularly in coastal (e.g., estuarine) ha-
bitats where the bulk of juvenile fishes occur. In addition, DNA-bar-
coding for prey identification (Sakaguchi et al., 2017) or a combination
of DNA-barcoding and stable isotope analyses may further elucidate the
energy flow of the WFS ecosystem (Carreon-Martinez and Heath, 2010;
Tarnecki and Patterson, 2015; Nelson et al., 2017), as well as help us to
properly distinguish between short-term and long-term diet trends in
the WFS region (Kroetz et al., 2017; Nelson et al., 2017).

Substituting the base diet matrix with the revised diet matrix in the
WFS-HAB Ecopath model had a large impact on trophic level estimates,
but generally not on basic parameters estimated in balancing Ecopath.
This was not surprising as many of the other basic parameters of
Ecopath were specified, rather than estimated during the mass-balance
process, and unchanged amongst the alternative models considered in
this study. Adult pinfish had the largest increase in trophic level be-
tween the Base model and the Revised Diet model (2.97 and 3.98, re-
spectively). Findings from previous studies suggest that the trophic
level for this group within the WFS should be above 3. Hansen (1969)
estimated that pinfish had a trophic level up to 3.4 in Florida estuaries,
while Motta et al. (1995) found that pinfish had a trophic level of 3.2 in
Apalachee Bay, Florida. Mullet groups (Mugil spp.) had the largest de-
crease in trophic levels between the Base model and the Revised Diet
model (from 2.24 to 2.03 for adults and 2.32 to 2.17 for juveniles). This
resulted from sediment detritus being the primary food source for
mullet groups in the revised diet matrix, as indicated by the hierarchical
cluster analyses. The trophic level of mugilids can vary greatly from one
species to another and from one region to another (Whitfield, 2016),
but reduced trophic levels obtained with the revised diet matrix are
reasonable for the WFS. Collins (1981) found that mullets primarily fed
on macrophytic detritus (40 %) and sand/shell particles (56 %) off
Seahorse Key, Florida and on sediment particles (53 %) and algae (32
%) in Crystal River, Florida. A majority of functional groups had larger
trophic level estimates in WFS-HAB Ecopath upon employing the re-
vised diet matrix, which expanded the ecosystem structure modeled in
WFS-HAB Ecopath. This is a significant implication of revising the diet
matrix in WFS-HAB Ecopath as truncated marine food webs over-
simplify the fish community, masking higher trophic levels and their
associated interactions, which can bias ecosystem-based fisheries
management advice derived from Ecopath outputs (Hussey et al.,
2014).

Pelagic coastal piscivores was the most impactful group in WFS-
HAB Ecopath when the base diet matrix was employed, due to their
strong negative impacts on several teleost functional groups. Similar
observations were made with other ecosystem models of the Gulf of

Mexico (e.g., Sagarese et al., 2017). However, many of the negative
impacts of pelagic coastal piscivores were reduced when the revised
diet matrix was employed in WFS-HAB Ecopath, subsequently reducing
their trophic interaction strength. In fact, several top-predator groups
had reduced trophic interaction strengths when the revised diet matrix
was used in WFS-HAB Ecopath, including benthic oceanic piscivores,
coastal sharks, and large oceanic piscivores. It is likely that the base diet
matrix of WFS-HAB Ecopath was over-representing top-down pressures
from some of the top-predatory groups as it was based on sparse, cur-
sory information, and that the revised diet matrix improves the re-
presentation of these pressures as it is based on WFS survey data. It is
worth noting that the revised diet matrix could be reflecting a reduction
in top-down pressures as there is nearly a 20-year difference between
the original development of the base diet matrix (Okey and Mahmoudi,
2002; Okey et al., 2004) and the development of the revised diet matrix
(which was estimated from diet data collected mainly over the last ten
years). Although highly debated in the literature, the reduction of top-
down pressures due to changes in the populations of top-predators (e.g.,
loss of abundance, shifts in habitats) could have negative impacts on
local ecosystems (Heithaus et al., 2008; Terborgh and Estes, 2010;
Boaden and Kingsford, 2015), including leading to more pronounced
HAB impacts (Walsh et al., 2011). This study does not provide evidence
of reduced top-down pressures, especially considering that some top-
predator groups had increased trophic interaction strengths when the
revised diet matrix was employed in WFS-HAB Ecopath, including
seabirds, dolphins, and benthic coastal piscivores. However, future
studies involving the WFS-HAB Ecopath model, such as exploring dy-
namic simulations using the revised diet matrix, should bear in mind
the ecosystem impacts from changing trophic pressures as they will
likely have important implications for resource management efforts.

Squids and adult shrimp were the most impactful groups when the
revised diet matrix was fed into the WFS-HAB Ecopath model. By
contrast, squids and adult shrimp had no significant impact in WFS-
HAB Ecopath when the base diet matrix was employed. When using the
revised diet matrix, squids had a strong negative impact on a variety of
groups in WFS-HAB Ecopath (e.g., jellyfish eaters, nearshore plankti-
vores, demersal piscivores, pinfish and ladyfish). Squids have been
identified as playing an essential role in the biological transfer of energy
in a variety of marine ecosystems, including the South Brazil Bight
(Gasalla et al., 2010), the eastern Pacific (Nigmatullin et al., 2001;
Shchetinnikov, 1988), and the Antarctic Polar Frontal Zone (Rodhouse
and White, 1995). Additionally, Coll et al. (2013) found that the eco-
logical role of squid occupying the neritic zone may be important as,
across a variety of Ecopath models, squid had strong top-down control

Fig. 8. Mixed Trophic Impact (MTI) indices for
the red tide pseudo-fleet. MTI indices are pro-
vided here for all of the alternative versions of
the WFS-HAB model: the base version (“Base”);
the version with elevated red tide mortality
(“Elevated HAB Mortality”); the version with
the revised diet matrix (“Revised Diet”); and
the version with both the revised diet matrix
and elevated red tide mortality (“Revised Diet
and Elevated HAB Mortality”). Here, we only
show results for the functional groups for
which the difference between the red tide MTI
index from the Base model and alternative
models was greater than 0.02. Results are
shown in their entirety in Appendix Figs C.1-
C.4.
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on their prey and were important prey for top predators. Thus, it is
plausible that squids play a critical role in the trophic structure of the
WFS ecosystem, and that the revised diet matrix better reflected this

role in WFS-HAB Ecopath. When using the revised diet matrix in the
WFS-HAB Ecopath model, adult shrimp had a strong positive impact on
a variety of the modeled groups, including groups of snappers,
groupers, and demersal coastal invertebrate feeders. Shrimps are

Fig. 9. Differences in overall impact indices between the WFS-HAB Ecopath
model using the revised diet matrix and the base WFS-HAB Ecopath model.
Grey bars highlight overall impact indices that increased upon substituting the
revised diet matrix into WFS-HAB Ecopath, indicating groups with increased
trophic interaction strength. Black bars highlight overall impact indices that
decreased upon substituting the revised diet matrix into WFS-HAB Ecopath,
indicating groups with reduced trophic interaction strength. Overall impact
indices for all alternative versions of WFS-HAB Ecopath are detailed in
Appendix Table C.1.

Fig. 10. Differences in omnivory indices between the WFS-HAB Ecopath model
using the revised diet matrix and the base WFS-HAB Ecopath model. Grey bars
highlight omnivory indices that increased upon substituting the revised diet
matrix into WFS-HAB Ecopath, indicating groups becoming more omnivorous.
Black bars highlight omnivory indices that decreased upon substituting the
revised diet matrix into WFS-HAB Ecopath, indicating groups becoming less
omnivorous. Omnivory indices for all alternative versions of WFS-HAB Ecopath
are detailed in Appendix Table C.2.
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known for strongly influencing benthic communities (e.g., March et al.,
2002) and to be essential for the recycling of nutrients (e.g., Welsh,
1975). Additionally, Fujiwara et al. (2016) found significant associa-
tions between shrimp abundance and the catch rates of fish in some
regions of the Gulf of Mexico. Thus, it is plausible that the role adult
shrimp have in the trophic structure of the WFS ecosystem was pre-
viously underrepresented, and that the revised diet matrix better re-
flects this role. Indeed, any scenario entailing large changes in squid
and/or adult shrimp mortality rates tested with WFS-HAB EwE using
the revised diet matrix will very likely result in major changes in the
dynamics of the simulated WFS ecosystem (Sala and Sugihara, 2005).

Substituting the revised diet matrix into the WFS-HAB Ecopath
model drove the minor differences in PREBAL diagnostics we observed
(Appendix B). Although a majority of the PREBAL diagnostics for the
alternative versions of WFS-HAB Ecopath were met, suggesting that
model inputs and estimates were biologically reasonable, some were
not met. This may be acceptable (Link, 2010; Heymans et al., 2016), yet
we recommend future studies to complete an extended evaluation of
the performance of WFS-HAB Ecopath to ensure the information ex-
tracted from this model that is used to assist resource management
efforts is as robust as possible (Heymans et al., 2016).

Overall, this study found that compared to the base diet matrix of
WFS-HAB Ecopath, the revised diet matrix estimated in this study had
higher connectivity amongst functional groups, more generalist pre-
dators, and more omnivorous groups. These features are observed in a
large number of marine food webs, particularly highly diverse ecosys-
tems like the WFS (Link, 2002; Dunne et al., 2004; Shurin et al., 2006;
Thompson et al., 2007). Diet matrices generally represent a mere por-
tion of the complexity of real ecosystems. The increased connectivity
and intricacy amongst functional groups provided by the revised diet
matrix suggests an improved representation of an inherently complex
and highly diverse marine ecosystem. Moreover, as indicated earlier,
the WFS-HAB Ecopath model using the revised diet matrix is less likely
to predict unreasonably high predation mortality rates due to specific
predators, particularly for juvenile fishes, as prey items are generally
consumed by a broader diversity of predators in the model (Sagarese
et al., 2017). Therefore, we conclude that, as a starting point to evaluate
the dynamic and spatio-temporal impacts of HABs and other ecosystem
perturbations, using the revised diet matrix in the WFS-HAB Ecopath
model is more reliable than using the diet matrix previously fed into
WFS-HAB Ecopath. That being said, food web complexity and omnivory
are often used to assess ecosystem stability, but no clear patterns be-
tween food web connectivity or omnivory and ecosystem stability have
been established (Landi et al., 2018). We did not evaluate the impacts
of the revised diet matrix on ecosystem stability, but future studies
considering network approaches, energy flow analyses, and food web
descriptors (e.g., weighted connectance; van Altena et al., 2016) could
explore this issue (Landi et al., 2018).

Negative impacts of the fleets (i.e., red tides and fisheries) in-
tensified in WFS-HAB Ecopath when the revised diet matrix was em-
ployed, confirming the concerns expressed in Gray DiLeone and
Ainsworth (2019) about the limitations of WFS-HAB Ecopath due to the
uncertainty of the base diet matrix. This suggests that part of the vul-
nerability to HABs is due to feeding dependencies (as opposed to direct
toxicological effects). The negative impacts of the red tide pseudo-fleet
intensified for most of the functional groups vulnerable to red tides,
particularly for the skate/ray complex and juvenile red drum. The in-
tensification of red tide impacts on juvenile red drum seems reasonable
given that red drum recruitment declined markedly in 2005 and 2006,
seemingly due to the severe HAB event that took place in 2005
(Flaherty and Landsberg, 2011). Moreover, Sagarese et al. (2017) found
the skate/ray complex to be particularity vulnerable to red tides within
the U.S. Gulf of Mexico. Using the revised diet matrix in WFS-HAB
Ecopath also intensified the negative impacts of the red tide pseudo-
fleet on gag and red grouper, as well as the negative impacts of the
recreational fleet on these two species. Thus, the negative impacts of

recreational fishing and red tides on gag and red grouper may have
been underestimated in the previous versions of WFS-HAB Ecopath that
aimed to inform gag and red grouper assessments (Gray et al., 2013;
Sagarese et al., 2015). This may explain why the red grouper mortality
rates predicted by Sagarese et al. (2015) did not reflect the large
mortality rates suggested by field observations.

This work represents an important advancement in the progression
of ecosystem modeling tools for assisting resource management efforts
for the WFS. The next step is to use the WFS-HAB Ecopath model with
the revised diet matrix to conduct dynamic simulations with the Ecosim
component of WFS-HAB EwE. We demonstrated the strong influence
diet has on the trophic structure estimated by the WFS-HAB Ecopath
model, and the more complex structure estimated by WFS-HAB Ecopath
is likely to imply very different dynamics over time in Ecosim. Thus, the
quantified uncertainty ranges in diet proportions we presented could be
used to explore the impacts of diet uncertainty on advice for resource
management based on dynamic simulations with Ecosim (Koehn et al.,
2016; Morzaria-Luna et al., 2018; Bentley et al., 2019). Although we
found that elevated red tide mortalities had virtually no impact on the
trophic structure of WFS-HAB Ecopath, they did impact specific func-
tional groups and could have stronger impacts in dynamic simulations
with Ecosim. Future work should explore the impacts of uncertainty in
the HAB mortality driver of WFS-HAB Ecopath, which is based on an-
ecdotal observations reported to the FWRI fish kill database due to the
lack of quantitative information on fish kills (Driggers et al., 2016;
Sagarese et al., 2017). Finally, red tide blooms in the WFS can vary
significantly in space and over time (Steidinger and Haddad, 1981;
Steidinger and Vargo, 1988) and the catch-potential of targeted and
bycatch species may increase during red tide blooms due to denser
spatial patterns (Craig et al., 2005; Craig, 2012). Therefore, extending
the WFS-HAB EwE model to an Ecospace model in order to simulate the
spatio-temporal dynamics of red tides (O’Farrell et al., 2017) would
allow for the estimation of red tide mortality rates based on the degree
of spatial overlap between red tides and the functional groups that are
vulnerable to them.

In conclusion, we found that using a large, empirical diet database
to develop a more complex and more realistic diet matrix profoundly
changed key ecological processes in WFS-HAB Ecopath pertinent for
exploring HAB impacts and other important resource management
questions. In particular, HAB mortality rates with the revised diet ma-
trix were higher and more consistent with field observations for gag and
red grouper, which are some of the species most effected by HABs.
These findings show the importance of having accurate and up to date
diet data when using ecosystem models to infer the impacts of eco-
system perturbations such as HABs throughout the food web.
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